Integrative Systems Models of Cardiac Excitation–Contraction Coupling Alternans and Arrhythmias: From Cells to the Heart Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics
نویسندگان
چکیده
Excitation–contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca transport. The complexity and integrative nature of heart cell electrophysiology and Ca cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca binding to a channel protein, and macroscale phenomena, such as excitation–contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation–contraction coupling and the insights that have been gained through their application. (Circ Res. 2011;108:70-84.)
منابع مشابه
Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks Alternans and Arrhythmias: From Cells to the Heart Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics
Cardiac signaling networks exhibit considerable complexity in size and connectivity. The intrinsic complexity of these networks complicates the interpretation of experimental findings. This motivates new methods for investigating the mechanisms regulating cardiac signaling networks and the consequences these networks have on cardiac physiology and disease. Next-generation experimental technique...
متن کاملWhole - Heart Modeling Applications to Cardiac Electrophysiology and Electromechanics Natalia
Recent developments in cardiac simulation have rendered the heart the most highly integrated example of a virtual organ. We are on the brink of a revolution in cardiac research, one in which computational modeling of proteins, cells, tissues, and the organ permit linking genomic and proteomic information to the integrated organ behavior, in the quest for a quantitative understanding of the func...
متن کاملWhole-heart modeling: applications to cardiac electrophysiology and electromechanics.
Recent developments in cardiac simulation have rendered the heart the most highly integrated example of a virtual organ. We are on the brink of a revolution in cardiac research, one in which computational modeling of proteins, cells, tissues, and the organ permit linking genomic and proteomic information to the integrated organ behavior, in the quest for a quantitative understanding of the func...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملSystems Approach to Understanding Electromechanical Activity in the Human Heart
The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of cardiologists, cardiac electrophysiologists, cell biophysicists, and computational modelers on August 20 and 21, 2007, in Washington, DC, to advise the NHLBI on new research directions needed to develop integrative approaches to elucidate human cardiac function. The workshop strove to identify limitations in the use of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010